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Testing Transformations to Achieve Approximate Normality

by

Raymond J. Carroll'
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Abstract
We propose a competitor to likelihood and significance methods for power
transformations to achieve approximate normality in a linear model. The new
method is shown in theory and a Monte-Carlo experiment toc produce more robust
inferences than the likelihood method and considerably more powerful (although

possibly slightly less robust) inferences than the significance method.
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1. Introduction

Box and Cox (1964) considered methods in the linear model for achieving
approximate normality, homoscedasticity and additivity by transformations. They

hypothesized that for some A,

!(A)=xe+s,

~ ~

where X is an nxp full rank matrix, B is a pxl vector of constants, the errors
€ are normal with covariance matrix 021, and individual elements Yik) are

defined by

y
1

(Yi - 4§ A£O

log Y.1 A=0

They proposed maximum likelihood for estimating B, o and A and likelihood ratio

tests for hypohteses of the form H : A = A

o 0

Andrews (1971) noted that these methods could be criticized on two counts.
First, the likelihood ratio tests are only approximately valid. Second, he
showed by example that the maximum likelihood estimate of A could be heavily
influenced by one deviant observation, confirming the well-known fact that maxi-
mum likelihood at the normal model tends not be robust. To meet these criticisms,
Andrews developed a method (the significance method) based on F-tests with exactly
specified Type I error at the normal model and, in his example, relative insen-
sitivity to a deviant observation.

Atkinson (1973) criticized the significance method by showing in a Monte-
Carlo experiment that, at the normal distribution, the likelihood ratio test is
much more powerful than Andrew's F-test. Atkinson also proposed a method for
testing HO:A = Ao which his Monte-Carlo study indicates is essentially equivalent

at normality to the likelihood ratio test. Atkinson does not address Andrews'

point about robustness.




We thus have a situation that the methods which are powerful for testing in
the normal model are not robust, while the method which appears to be robust is
not powerful at the normal model. Since power transformations are intended to
achieve only approximate normality, the methods mentioned above are deficient in
not considering the possibility that the errors € might be only close to normality,
with perhaps heavier tail behavior. The purpose of this paper is to present a
computationally feasible method which strikes a middle path between the existing
methods, being powerful at models including (but not limited to) the normal model
and also being relatively robust for Andrews' example.

In Section 2 we present our method. In Section 3 we discuss a Monte-Carlo
experiment in which likelihood based methods do poorly in terms of Type I error,
Andrews' significance method does poorly in terms of power, and our methods

appear to be dominant.

2. A New Method

To motivate the method, we first consider the problem of estimating location

with a symmetric error distribution. Huber (1964) considered the model

where the €, are independent and identically distributed with distribution func-
tion F belonging to a class F = {G: G = (1-€)9 + eH, H symmetric}, ¢ > 0 and ¢
the standard normal distribution function. Without considerations of scale, the
least favorable member of F was shown to have density function proportional to

expi-p(x)}, where

plx) = 5 x° x| <k

= k(|x| - k/2) |x] >k .




The class of Huber M-estimates of 0 are maximum likelihood estimates of ( under

the model with the least favorable density,

Our method follows this idea and attempts to stay as close to maximum like-
lihood as is computationally feasible, The corresponding "least favorable" like-

lihood is proportional to

()

§ n b -X, B

; (2.1) L(B,0,A) = o " ] exp{-p[ —‘—?:L"-] + (A-1log Y, )
% i=1

For any given )\, we will find 8(\) and o()) by the robust regression method

proposed by Huber (1977, p. 37), so that our method is computationally feasible.
Thus, we will maximize (2.1) subject to constraints defining R(A) and 3(1),

namely for Y(x) = dp(x)/dx,

(A)
X, B
(2.2) n! 2‘ " [_.i___;i__"] x; = 0
i=1
-1 Y(A) - xl B 2
(2.3) (n-p) Z o ——— | = E, ¥°(2) ,
i=1 ’

where & is the standard normal distribution and the expectation is taken under o.

We denote the estimates of A and R obtained in this fashion by \P and

g(AR). In testing a hypothesis of the form HO: \ = \0. the likelihood ratio
statistic under the model (2.1) is
LB\,
P L(gx( o) i(:o). A
(@IKRS. R Q)
under appropriate conditions which is asymptotically chi-square with one degree of freedom.

In terms of inference concerning the B vector, computationally it is most

feasible to decide upon a transformation and then do a robust regression analysis

as in Huber (1977), perhaps using F-tests as in Shrader (1976) or pseudo-observa-

tions as in Bickel (1976).




A theoretical assessment of the influence of outliers on this method and on
normal theory maximum likelihood is difficult. A useful technique is the influ-
ence curve (Hampel (1974)), which has been used in location problems to describe
the effect of a single observation on an estimator. If one can write the estima-
tor as a function T(Fn) of the empirical distribution function, then the influence
curve evaluated at a point Yo and an underlying distribution F is

IC(yg,F) = lim (T(U-)F + € 8(yy)) - T(F)/e ,
€0
where 6(y0) is a distribution with mass one at the point Yo

To get an idea of the effect of an observation on the new metho!, we consider
the simplified case that o = | and 8 = 0 and consider the model (2.1). If F is
the empirical distribution function, differentiation yiele that A\, = \(Fn),

R
where in general A(F) can be written as the solution to

[ o6, x@nar o) = frogy a ko,

where

60 A®) = &y Nyan], gy = 0N 1oy -y

Applying the definition of the influence curve, one can show

that the influence curve is proportional to
vy M) Gy, AR
0 0*

We thus obtain that if A(F) = 1 (no transformation necessary), for large values
of y,

(1) The influence curve of normal model maximum likelihood Wi = x is
proportional to yzlog ¥s

(2) The influence curve of the new method is proportional to y log y.




Thus, we expect our new method to be somewhat sensitive to outliers but not

nearly as much as maximum likelihood at the normal model.
To verify this hypothesis, we followed Andrews' lead and changed the
response .23 for poison II, treatment A (in the Box and Cox biological example)

to .13. The results are given in Table 1.

Table 1

The effect of one outlier on estimates of )\

Original Datg gﬁggggd Data
Likelihood Method

75% confidence interval -1.01 < XA < -0.55 -0.30 <\ < 0.05
Maximum likelihood estimate -0.75 -0.15

Andrews Method
75% confidence interval -0.90 < )\ < 0.05 -1.20 < A < 0.00
Minimum F estimate -0.50 -0.50

New Method
75% confidence interval -1.02 < A < -0.57 -0.64 < \ < -0.20
Estimate -0.78 -0.43

Table 1 backs up our influence curve calculations in showing that the new
method's estimate AR is more robust than the normal theory maximum likelihood
estimate. Andrews' minimum F estimate appears slightly more robust than XR but
the issue is still in doubt because

(1) This may be a reflection (see Section 3) of the lack of power of
the F-test used in the significance method.

(2) Whether one uses A = -1.00 or A = -.50 appears immaterial, as the latter

has significance levels of .49 for interaction and less than 0.0001 for main

cffects.




Certainly XR is not completely insensitive to outliers, but the results in Table
1 suggest that it may be of real use when compared to the very conservative

minimum F estimate.

3. A Monte-Carlo Study

For purposes of nomenclature, we will call the method proposed in this
article the Robust-type method. In order to assess the small sample performance
of the four procedures discussed here, we performed a Monte-Carlo experiment,
similar to the one described by Atkinson (1973), for computing the power of
tests of HO: A = -1 at nominal significance level a = .05 and various true
values of A. The specifics were as follows:

(1) The parameter values were the estimates from an additive model on the
observations y‘l, using the Box and Cox biological data.

(2) In order to assess the methods over a wide class of distributions, four
error models were considered. -
(a) N(0,1) - standard normal, u = 0, 0~ = 1.
(b) .90N(0,1) + .10N(0,0% = 9) - standard normal with probability .90,
N(0,02 = 9) with probability .10.
(¢) .80N(0,1) + .20N(0,02 = 9).
(d) The t distribution with 8 degrees of freedom.

(3) For each of the true values X’l the observations for euach simula-
tion were (expected cell mean + C» error) /X|. Here the errors are the four
distributions mentioned above and C = (.237): was chosen so that most observations
were positive. If an observation was less than 0.10, it was set to 0.10.

(4) The sample sizes were N=1000 for Atkinson's and the significance method,
N=600 for maximum likelihood, and 150 < N < 250 for the robust-type, the latter
due to time considerations.

In Table 2 we list the results of this study. The conclusions can be
summarized as follows:

(1) The Atkinson and likelihood approaches are quite similar. It is signif-
icant to note that they both have Type I errors much higher than the nominal o = .0§
under the two contaminated normal distributions.

(2) The Robust-type method proposed here appears preferable to the Atkinson

and Likelihood methods, because it has comparable power, with the pleasant fcature
that its Type I error adheres much closer to the nominal « = .0S.

e




(3) The Robust-type method also appears preferable to the significance
method because of the lack of power of the latter over all the distributions,
which can be best seen by looking at the slopes of a plot of A against power,

Table 2
Power of the four tests for HO: ko = -1 under three distributions. The number
of iterations is N=1000 for Andrews and Atkinson, N=600 for Maximum Likelihood,
and 150 < N < 250 for the Robust-Type method. Nominal type I error (when

A= -1.00) is a = .0§,

N(0,1)

A Andrews Atkinson Maximum Likelihood Robust-Type
-2.0 .539 .762 .779 772
-1.5 .268 .443 .450 .461
-1.0 .044 .058 .045 .048
- .75 .308 453 .440 .402
- .60 .807 .931 .952 .942

.90 N(0,1) + .10 N(0,9)

A
-2.0 .363 .615 .599 .636
-1.5 195 404 .368 379
-1.0 .048 .178 167 .100
- .75 .209 .393 .388 .353
- .60 .589 .832 .844 . 864

A .80 N(0,1) + .20 N(0,9)

-2Tb 268 .580 .548 . 549
-1.5 L1582 .406 .375 L3348
-1.0 .048 .198 .200 116
- 78 .163 371 .338 279
- .60 .466 .780 .728 L 744




t,8 o‘girees of freedom

A Andrews Atkinscn Maximum Likelihood Robust Type
-2.00 . & .688 .686
-1.5 - - .376 .341
-1.0 - - .072 .047
; - 715 - - .388 .410
i - .60 - - .952 .888

The simulation results show that the Robust-type method proposed here is
preferable to the likelihood method for inference about the parameter A. The

same preference held when making inferences about £ when the null hypothesis

HO: A = -1 is true but the errors are slightly heavier-tailed than the normal

model. In Table 3 below we list for the intercept parameter the values of
1
n? (# of simulations)a (standard error for intercept) when the true value of

i A = -1.00, with n = 48,

Table 3

Normal standard errors for intercept when A = -1.00 .

Maximum Likelihood  Robust-type Method

Standard Normal 3.04 S
.90 N(0,1) + .10 N(0,9) 4.48 4.01
.80 N(0,1) + .20 N(0,9) o i 4.62

Thus, the Robust-type method 1leads to more robust estimates of the R

~

vector than that obtained by maximum likelihood.

4. Discussion

We have proposed a method which is essentially a constrained likelihood
method for a model with heavicr tails than the normal model. This Robust-type
method appears preferable to normal theory likelihood approaches in terms of

j inference about A and B, at lcast when onc considers the possibility of error




R s el L o

models other than the normal. The Robust-type method seems preferable to the
significance method because of the lack of power of the latter and the ability
of the former to stay near its nominal Type I error (for inferences about A)
over a wide range of distributions. The new method appears slightly less robust
against outliers than the sijnificance method, but this defect does not appear

to be very serious.
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